

Using AutoDock for Virtual Screening

CUHK Croucher ASI Workshop 2011

Stefano Forli, PhD Prof. Arthur J. Olson, Ph.D

Molecular Graphics Lab

AutoDock

Screening and Virtual Screening

The ultimate tool for identifying active compounds is the biological test:

High-Throughput Screening

Expensive (both money and time)

Can be automated but it still needs a lot of human intervention

Not all assays can be automated

Screening and Virtual Screening

Compounds can be pre-screened in silico enriching the ligand set

Virtual High-Throughput Screening

Cheap (saves both money and time)

Can be easily automated

Dramatic reduction of the number of:

- compounds to be tested
- false negative

Virtual Screening

Definition

"Search for compounds with a defined biological activity using a computational model"

Virtual Screening

Advantages

Relatively cheap filter (save both time and money)

Enrich ligand libraries

Exploit the increase of target structures (structural genomics and crystallography)

Allow to test *in silico* the "druggability" of new targets

Virtual Screening

Advantages

Relatively cheap filter (save both time and money)

Enrich ligand libraries

Exploit the increase of target structures (structural genomics and crystallography)

Allow to test *in silico* the "druggability" of new targets

Disadvantages

Often inaccurate

Scoring-function dependent

There is no method that's better than others

Strongly dependent on:

- target
- search method
- chemical space sampled

<u>Always</u> provides an answer (McMaster competition 2005)

Identify a molecule able to bind to a target providing a biological function

K_i / Energy

The Goal

Identify a molecule able to bind to a target providing a biological function

K_i / Energy

Unusual elements (Pt, Ru, U...) Reactive chemical groups Over/Under-functionalization Partition coefficient (logP)

The Goal

Identify a molecule able to bind to a target providing a biological function

Virtual Screening The Question

Which <u>ligand</u> binds in a <u>target</u> structure ?

THE SCRIPPS RESEARCH INSTITUTE[®]

What the answer looks like

Hit low/medium target affinity

Lead sub-optimal target binding affinity

To be chosen for further development a **lead** compound should have the following properties:

- relatively simple chemical features (suitable for combinatorial/med-chem optimization, no/few chiral centers)

- well-established SAR series (similar compounds/chemical groups should present similar activity)

- good ADME properties
- [OPTIONAL] favorable patent situation

What the answer looks like Filtering '*rules*'

Drugs 'Rule of Five' (Lipinski rule)

Hydrogen bond donors <= 5 Hydrogen bond acceptors <= 10 Molecular weight <= 500 dalton $LogP_{w/o} < 5$ Approved drugs

Hit Fragments 'Rule of Three'

Molecular weight <= 300 dalton HB donor/Acceptors <= 3 ClogP <= 300 Nrot <= 3

— ASTEX frag hits

HTS efforts by using Lipinski-filtered libraries led to few micro-molar hits

LEADS are not DRUGS

"Rules" are good in principle, but they require to sample a huge chemical space to give really effective molecules.

What the answer looks like Rules 'Exceptions'

The nature and location of the target must be take into account for properties profile:

CNS molecule (lipophilic blood-brain-barrier)

gastro-intestinal antibiotic (highly soluble)

Natural compounds & Pro-drugs and "last resort" compounds

What the answer looks like

INSTITUTE[®]

Virtual Screening The Question

Which **LIGANDS** are *likely* to bind in a <u>target</u> structure ?

Where the answer should be found Target state(s)

Hitting a moving target:

- functional states (active-inactive)
- dynamic states (temperature)
- protonation/complexation states

Virtual Screening The Question

Which <u>ligands</u> are *likely* to bind the <u>most</u> probable state(s) of my target structure

Virtual Screening Hints

Prepare target and select ligand libraries with care

Filter unusual elements Reliable 3D geometries Protonation states/tautomers

Reduce the space of your search

diversity sets generic filtering target specific filtering (lipophilic VERSUS hydrophobic binding sites)

Use all available information to select results

mutagenesis, SAR...

Try to sample different conformations of the protein

reduce false negative

Use reference compounds whenever available

Useful for comparing results with ligands with known activity

Available ligand libraries

PubChem http://pubchem.ncbi.nlm.nih.gov/ All biological data related to a compound

2D structures

A <u>free</u> database of commercially available compounds for virtual screening

109 commercial compound suppliers, 30x10⁶ compounds (non-unique)

Irwin and Shoichet (2005) J. Chem. Inf. Model. 45(1), 177-82

AutoDock Single Docking

INSTITUTE*

AutoDock VS

AutoDock VS

How spot a good answer?

Ligand properties used for results analysis

Energy:

Ligand Efficiency :

Cluster analysis:

AutoDock score $\Delta g = \frac{-RT \log K_d}{N_{\text{non-hydrogen atoms}}}$

- multiple poses clustering tolerance
- cluster size
- energy range

Knowledge-base analysys

- chemical similarities with known binders
- mutagenesis data
- structure/sequence homology

Тне SCRIPPS INSTITUTE[®]

REDUCE THE NUMBER OF RESULTS TO ANALYZE AND (HOPEFULLY) ENRICH THE QUALITY

How spot a good answer?

Ligand properties used for results analysis

OPTIMIZATION

I N S T I T U T E[®]

How spot a good answer?

Results clustering

	CLUSTERIN	G HIST	DGRAM		BEST ENERGY?			
lus ter ank	Lowest Binding Energy	 Run 	 Mean Binding Energy	 Num in Clus	Histogram 5 11 15 20 25 30 35			
1 2	-7.52 -7.39	 14 60	-7.52 -7.39	7 93	\` `\`\`\` \####### \########################			
umbeı	r of multi-m	ember o	conformation	al clus	sters found = 2 out of 100 runs. MOST POPULATED CLUSTER?			

- 🗩 Research
- I N S T I T U T E[®]

AutoDock VS

AutoDockVS | Raccoon

gand(s) Receptor(s) Maps Docking V	'S Generation					
[+] Add ligands [+++] Add a directory	[=] Impo	rt a file list	[-]	Remove selected [] Re	move a	
Ligands accepted : 763 / 1592						
/disk2/work/pr/4d9_prot_DsetII/lig/ncidiv_p0.0/	pdbqt/ZINC003928	97.pdbqt				
/disk2/work/pr/4d9_prot_DsetII/lig/ncidiv_p0.0/	pdbqt/ZINC055419	27.pdbqt				
/disk2/work/pr/4d9_prot_DsetII/lig/ncidiv_p0.0/	pdbqt/ZINC016992	87.pdbqt				
/disk2/work/pr/4d9_prot_DsetII/lig/ncidiv_p0.0/	pdbqt/ZINC181893	80.pdbqt				
/disk2/work/pr/4d9_prot_DsetII/lig/ncidiv_p0.0/	pdbqt/ZINC131402	24.pdbqt				
/disk2/work/pr/4d9_prot_DsetII/lig/ncidiv_p0.0/	ndhat/ZINC047919	92 ndhat	Ligand filtor	c		
/disk2/work/pr/4d9_prot_DsetII/lig/ncidiv_p0.(_			Ligand filter) د		
/disk2/work/pr/4d9_prot_DsetII/lig/ncidiv_p0.(-ilter presets :	DrugLikenes	is _			
/disk2/work/pr/4d9_prot_DsetII/lig/ncidiv_p0.(
/disk2/work/pr/4d9_prot_DsetIl/lig/ncidiv_p0.1						
disk2/work/pr/4d9_prot_Dsetii/lig/ncidiv_pu.		MIN MAX		Preview		
aisk2/work/pr/4a9_prot_Dsetti/lig/ncialv_pu.	H hand donors	0 5	Default			
aisk2/work/pr/4d9_prot_Dsetti/lig/nciaiv_p0.t	n-polla aoliors	0 0	Derault			
aisk2/work/pr/4d9_prot_Dsetil/lig/ncialy_pu.	H-bond acceptors	0 10	Default			
aisk2/work/pr/4d9_prot_Dseut/lig/nciaiv_p0.t		11		Total number of ligands: 159	12	
aisk2/work/pr/4d9_prot_Dseut/lig/nciaiv_p0.t	Molecular weight	160 480	Default	Accepted ligands: 76	i3	
aisk2/work/pr/4d9_prot_Dseut/lig/nciaiv_p0.t				Rejected ligands: 82	:9	
disk2/work/pr/4d9_prot_Dsett//ig/noidiv_pot	Number of atoms	20 70	Default		_	
disk2/work/pr/4d9_prot_Dsettl/lig/noidiv_p0.t	Bototoblo bondo	0 32	Default			
disk2/work/pr/4d9_prot_Dset/l/ig/noidiv_pot	Rotatable bonus	JU JZ	Deraun			
disk2/work/pr/4d9_prot_Dset//lig/noidiv_pot	📕 Filter ligands	with non-AD at	om types			
answerneraeprot_bacaling/iteldiv_pox						
20BQT generation ontions			Anniv			
			. 479-3			
	Welcome to Bacci	OON LAUTOLOCK	VS			

- input preparation and filtering
- file-system organization
- parameter files generation
- automated calculation scripts
- generation data logging

AutoDockVS | Fox

Fox AutoDock VS **TESTING**	X		Energy profile
Fox AutoDock VS **TESTING** Ele Mode Analysis Waard Hel Input Filter & analysis Viewer Export Total ligands : Ligands :2767 Total accepted : 1837 [150.6260%] Score Profiler(TM) Filter set : Cotal accepted : 1837 [150.6260%] Inter set : Save Delete Pose selection Unique ouvest energy Energy - Save Delete Fore selection Ouvest energy largest cluster Best - 9.68 Bost - 9.69 Bost 1.00 % Usater size % Ugand efficiency % Ugand efficiency 0.01 Bost - 0.01 Bost - 0.01 Bost - 0.08 Bost - 0.08 Bost - 0.08 Bost - 0.08 <	nput data Filter & Analysis Viewer Export imatinib Energy -15.39 Ligand #filter % Constraints Active torsions 6 Clustering (100 runs @ 20.00 Atolerance) Active torsions 94.00 % [94] Expanse Hydrogen bonds 3 20	Snap! Load	Energy profile Soo ligands, Lowest energy in largest cluster (2.0A RMSD) 75 76 76 76 76 76 76 76 77 76 76
- clustering - results analysis - report tools The Scripps Research Institute*	Select Ligand E Leff. Tors 1 imatinih 15.33 -0.42 6 2 21NC01572309 -10.94 -0.33 4 3 21NC0157303 -10.81 -0.31 6 4 21NC01639533 -10.81 -0.31 6 5 21NC0155222 -10.12 -0.41 5 5 21NC01578220 -10.12 -0.34 7 7 21NC015578220 -10.12 -0.34 7 8 21NC01559756 -9.92 -0.35 5 9 21NC001559756 -9.92 -0.35 5 9 21NC0155542 -9.24 -0.44 5 13 21NC015574615 -9.16 -0.42 4 15 21NC01573467 -9.11 -0.43 3 16 7NNON047078 -9.06 -0.44 5 16 21NC01573467 -9.11 -0.40 3 16 7NNON	TYR253	ASPRO1 HIS361 ARPRO102 ARPRO102 ARPRO102 ARPRO102 ARPRO102

How to obtain good answers

Virtual Screening Hints

Pre-processing

- Choose with care which ligands to include in the screening
- Select representative target state(s)

Post-processing

- Efficiently filter results:

- avoid chemical complexity
- search for specific interactions (polar residues)
- use both energy score and ligand efficiency
- Use knowledge-driven criteria
 - use target information (function, mutagenesis)
 - use known binders references (if available)

Recommended readings

"Is there a difference between leads and drugs? A historical perspective"

Oprea, T., I., Davis, A., M., Teague, S., J., Leeson, P., D.J.Chem. Inf. Comput.Sci. 2001, 41, 1308-1315

"A 'rule of three' for fragment based lead discovery?" Congreve, M., Carr, R., Murray, C., Jhoti, H. 2001, Drug Discov. Today, 2003, v8, n19, p876

"Virtual screening - what does it give us?"

Köppen H. Curr Opin Drug Discov Devel. 2009 May;12(3):397-407

"Ligand efficiency: a useful metric for lead selection"

Hopkins AL, Groom CR, Alex A. Drug Discov Today. 2004 May 15;9(10):430-1.

"Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings"

C.A. Lipinski; F. Lombardo; B.W. Dominy and P.J. Feeney (1997). . Adv Drug Del Rev 23: 3-25

For some of the pictures used in this presentation: Wikipedia, CC and GNU-FDL